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System identification for the Ott-Grebogi-Yorke controller design

Bogdan I. Epureanu and Earl H. Dowell
Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708

~Received 17 July 1997!

A technique to compute the linearized Poincare´ map and the sensitivity vector required for the implemen-
tation of an Ott-Grebogi-Yorke~OGY! controller from experimental data is presented. Unlike previous meth-
ods, the linearized map and the sensitivity vector are computed using only data collected over a single period
of the limit cycle. The main advantage of the present method is the fact that it eliminates the long waiting
period required to design an OGY controller using previously known methods. Numerical examples are
presented using the Duffing oscillator with random perturbations to simulate noisy experimental data.
@S1063-651X~97!10011-3#

PACS number~s!: 05.45.1b
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I. INTRODUCTION

Chaotic behavior, now commonly observed in a wide v
riety of laboratory experiments, is beginning to reveal
great potential for applications. One of the areas of sign
cant practical relevance is the control of chaos. A succes
attempt to control a chaotic system was made by Ott, G
bogi, and Yorke@1# and led to a wide variety of experiment
validations @2–7#. Several researchers proposed vario
schemes derived from the original Ott-Grebogi-Yor
~OGY! method @8–13#. All these schemes are based on
linear analysis and control of the dynamics of the system
a Poincare´ section and thus require the calculation of a l
earized Pincare´ map around a saddle node and a linear
proximation of the motion of the saddle node due to var
tions of a control parameter referred to as a sensitiv
vector.

Early examples of the control of chaos used maps kno
analytically, thus making the linearizations a straightforwa
step. Further investigations applied the OGY technique
nonlinear flows where the nonlinear Poincare´ map was nu-
merically computed and the linearized map and the sens
ity vector were easily obtained using finite differences. Ho
ever, for experimental applications, the finite-differen
technique usually cannot be used to compute the linear
Poincare´ map since most physical experiments do not all
an arbitrary setting of the state space coordinates. Howe
the finite-difference technique can still be used to comp
the sensitivity vector.

Most of the previous experiments computed the lineari
Poincare´ map using a linear least-squares fit of data m
sured in the Poincare´ surface around the saddle node. T
collect the required data, some researchers observed a tr
tory of the system for a long period of time and acquired
pair of data points whenever the pair of state space locat
were close to the saddle node. This acquisition scheme
plies data that belong to the strange attractor in the Poin´
map and are unevenly distributed around the saddle n
because typically strange attractors do not have a unif
density of points. Therefore, this method gives good res
for mildly unstable saddle nodes, but it may lead to lar
errors in the linear least-squares fit when severe instabil
are present@14#. To overcome this problem, Trickey@15#
561063-651X/97/56~5!/5327~5!/$10.00
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used a stochastic interrogation technique that allowed
acquisition of more uniformly placed state space locatio
However, the stochastic interrogation did not eliminate
long waiting period required to collect the data.

In all the previous techniques used to implement OG
controllers, a long observation period is necessary to iden
the system only after which can control be applied. In t
paper we propose an alternative technique to compute
the linearized Poincare´ map and the motion of the sadd
node using a time series of the nonlinear system. In cont
to previous methods presented in the literature, the data
essary for the calculation are acquired along a trajectory
is close to the limit cycle that will be stabilized. We sho
that quite accurate results can be obtained using data
lected during only one period of the limit cycle. The prese
technique thus allows the implementation of the OGY co
troller as soon as the system completes a cycle close to
limit cycle to be stabilized. Hence the present method elim
nates the long waiting period required by previous te
niques. The present method also allows the design of
adaptive controller that easily recomputes its parame
based on time series data, thus accounting for drifts in
parameters of the system@16#.

One of the nonlinear flows most often studied in the
erature, the Duffing oscillator@17–19#, is used to demon-
strate the present technique. Although the examples
sented are numerical, the data are randomly perturbe
simulate experimental measurements.

II. SYSTEM IDENTIFICATION
FROM A POINCARÉ SECTION

This section describes the nominal OGY method. In g
eral, a nonlinear Poincare´ map that depends on a parameterp
and on the state space coordinate of the systemxn may be
expressed as

xn115f~xn ,p!. ~1!

The linear approximation of the map around a fixed pointxFP
for a nominal value of the parameterp0 becomes

xn112xFP'J~xn2xFP!1dpw, ~2!
5327 © 1997 The American Physical Society
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whereJ is the Jacobian off, J5]f/]x, andw is the deriva-
tive of f with respect top and is referred to as thesensitivity
vectorw5]f/]p. Both the Jacobian and the sensitivity ve
tor are computed at the fixed point and at the nominal va
of the parameterp0 .

The finite-difference approximation of the Jacobian m
be calculated using state space coordinates that are clo
the fixed point. For the case of am-dimensional state space
a first-order accurate approximation of the Jacobian may
expressed as

J'@Df1•••Dfm#@Dx1•••Dxm#21, ~3!

whereDf i5f(xFP1Dxi ,p0)2f(xFP,p0) are column vectors
and Dxi are m linearly independent column vectors. Sim
larly, the sensitivity vector is approximated by

w'
f~xFP,p01Dp!2f~xFP,p0!

Dp
. ~4!

Alternatively, the Jacobian can be computed using a
ear least-squares fit of data. In this technique the linear
Poincare´ map in Eq.~2! is transformed to

xn11'Jxn1b, ~5!

whereb is an unknown vector characterizing the fixed po
b5xFP2JxFP. An overdetermined linear system is the
formed and solved using a standard linear least-squ
solver. To compute the sensitivity vector one performs
linear least-squares fit twice, determines two fixed points
two values of the parameterp, and computesw using these
two fixed points and Eq.~4!.

The following example uses a two-well Duffing oscillat
to show how a typical set of data may be acquired to iden
the Jacobian corresponding to a period-one limit cycle. T
nondimensional form of Duffing’s equation, where the co
trol parameter is the amplitude of excitation, may be e
pressed in first-order differential form as

ẋ5y,

ẏ52«y1
1

2

vn
2

v2 ~x2x3!1p cos~ t1w!, ~6!

where vn and « are the linear natural frequency and t
nondimensional damping in both wells of the Duffing osc
lator andv, p, andw are the frequency, the nondimension
amplitude, and the nondimensional phase of the excitat
respectively. The strange attractor displayed in a Poinc´
section of the flow is shown in Fig. 1, where the circle ind
cates the region of radius 0.1 where the data were collec
A blowup of this region is shown in the upper right corner
Fig. 1. The distribution of the data around the fixed point
one of the critical aspects of the fitting technique. T
banded structure of the attractor determines the distribu
of the data because the data were collected by observing
motion of the system for many cycles and thus the sta
belong to the strange attractor. Consequently, there are l
areas inside the circle of radius 0.1 that do not contain
data. This may lead to large inaccuracies for severely
stable fixed points because the data are stretched alon
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unstable manifold and contracted along the stable mani
thus being clustered along a curve. Kostelich has shown
this kind of structure leads to ill-conditioned least-squa
problems@14# where the relative error in estimating the Jac
bian is large even when the noise level in measuremen
small.

III. SYSTEM IDENTIFICATION FROM A PERIOD OF
THE LIMIT CYCLE

This section describes the proposed approach. The e
tion of a flow that has the Poincare´ map given by Eq.~1!
may be expressed in first-order differential form as

ẋ5g~x,p,t !. ~7!

The linear approximation ofg along the limit cyclex(t)
5L (t) that corresponds toxFP becomes

L̇1d ẋ5gu
dp50
x5L ~ t !1

]g

]xU
dp50
x5L ~ t !

dx1
]g

]pU
dp50
x5L ~ t !

dp, ~8!

where dx5x(t)2L (t) and dp5p2p0 . Transforming Eq.
~8! into a linear system of ordinary differential equatio
with variable coefficients, one obtains

d ẋ5A~ t !dx1d~ t !dp, ~9!

whereA(t)5]g/]xu
dp50
x5L (t) and d(t)5]g/]pu

dp50
x5L (t). The solu-

tion of this system may be symbolically expressed as

dx~ t !5expS E
0

t

A~t!dt D dx~0!1dp expS E
0

t

A~t!dt D
3E

0

t

expS 2E
0

u

A~t!dt D d~u!du. ~10!

The Poincare´ section of the solutiondx(t) leads to Eq.~2!,
where the Jacobian matrix is expressed as

FIG. 1. Chaotic attractor obtained in a Poincare´ section of Duf-
fing’s equation for«50.0595,vn51, v50.84, andp050.2664.
The circle indicates the region of radius 0.1 centered at the sa
node. A blowup of this region is shown in the upper right corne
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J5expS E
0

T

A~t!dt D ~11!

and the sensitivity vector is given by

w5expS E
0

T

A~t!dt D E
0

T

expS 2E
0

u

A~t!dt D d~u!du,

~12!

where T is the period of the limit cycle to be stabilized
Consequently, only the matrixA is needed to compute th
JacobianJ, while both A and d are need to compute th
sensitivity vector.

To compute the matrixA we propose a method referred
as a local identification. This method assumesa priori a
certain model for the real system and identifies the par
eters that describe this model. The parameters are comp
such that the state space trajectory of the model is clos
the limit cycle of the real system. Thea priori assumption of
a model is not a rare situation but rather a generic one
cause approximate models may be developed for most
tems of practical significance. Also the time-dependent p
of g is generally due to the external excitation that is usua
of known form. Furthermore, the model of the system is o
required to be first-order accurate near the limit cycle fo
single periodT. Nevertheless, we note that generally it is n
possible to determine a model that will accurately descr
the real system for a long period of time due to the sensi
ity to initial conditions. However, it is possible to approx
mate the dynamics of the system accurately for a short pe
of time as is needed for a local identification.

To demonstrate this method we consider a Duffing os
lator and its model given by

ẍ5c0ẋ1c1x1c2x21c3x31c4 cos~ t !1c5 sin~ t !.
~13!

Expressing Eq.~13! in a state space form and using a finit
difference scheme results in an equation at each instan
time t i during a periodT. For example, in the case of
constant time sampling interval, one may express the t
derivative using a second-order approximation as

g~xi ,p0 ,t i !5 ẋi'
xi 112xi 21

t i 112t i 21
. ~14!

Equating the finite-difference value ofg given by Eq.~14!
with the expression given by Eq.~13!, one obtains an over
determined linear system of equations that is solved for
unknown parametersci . Since the flow has sensitivity to it
initial conditions, a weighted linear least-squares sol
needs to be used. The weighting is designed such tha
errors in satisfying the equations obtained for large time v
ues are more important than the errors in satisfying the eq
tions obtained at small time values.

In Fig. 2 a time series of the simulated Duffing oscillat
is shown by the dots. To simulate experimental data, the t
series was randomly perturbed and a local identification
performed using the perturbed time series. The solid
indicates the trajectory of the identified model. As expect
the original and the identified systems have trajectories
are very close.
-
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Once the matrixA is computed, the Jacobian matrix
easily obtained using Eq.~11!. One may also use Eq.~2! for
dp50 to determine the fixed point as

xFP5~ I2J!21~xn112Jxn!, ~15!

whereI is the identity matrix andxn andxn11 are two adja-
cent states of the Poincare´ map that represent the first and th
last points of the time series.

To compute the sensitivity vector a second local ident
cation for a different value of the parameterp is performed.
The fixed point andw can then be found using Eqs.~15! and
~4!, respectively. This approach, however, requires the t
series of two periods of the limit cycle, one forp0 and the
other for a different value forp. A different approach that
uses data collected during a single periodT is based on Eq.
~12! where the vectord needs to be evaluated. Therefore, t
form of the control excitation acting on the system has to
known. This situation is quite often encountered in pract
because usually the external forcing is known. A typical e
ample is the cosine function used in the driven Duffing o
cillator shown in Eq.~6!. For this type of forcing, the vecto
d is simply given byd(t)5@0 cos(t1w)#T.

IV. NUMERICAL EXAMPLES

To simulate experimental measurements, Duffing’s eq
tions were integrated and then the state vectors were
turbed using a 0.013 maximum random perturbation of
position, a 0.003 maximum random perturbation of the
locity, and a 0.015 random perturbation of the location o
period one saddle node. The level of error introduced by
random perturbation was representative of the experime
results presented by Trickey@15#.

The matrixA was computed using a local identification
the dynamics along the trajectory, while a vectord was con-
sidered of the formd(t)5@0 cos(t1w)#T. The Jacobian, the
sensitivity vector, and the fixed point location were th
computed using Eqs.~11!, ~12!, and ~15!, respectively. The
results are presented in the first column of Table I and m

FIG. 2. The time series of the simulated Duffing oscillator
shown by the dots, while the solid line indicates the trajectory of
locally identified model given in Eq.~13!.
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TABLE I. Numerical comparison of the three methods of system identification.

Parameter
Local

identification
Linear

fit Exact
Error ~%!

local identification
Error ~%!
linear fit

J11 22.35 21.90 22.27 3.40 16.36
J12 24.44 23.47 24.21 7.67 11.14
J21 21.35 20.93 21.18 14.13 20.77
J22 22.91 22.01 22.49 16.74 19.17
wx 25.12 23.14 24.44 15.21 29.20
wy 22.74 21.43 22.04 34.50 29.88
xFP 0.228 0.233 0.233 2.20 0.49
yFP 0.0577 0.0597 0.0597 3.29 0.47
qx 0.476 0.628 0.544 12.4 15.4
qy 0.978 1.25 1.08 9.35 15.7
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be compared with the results of a standard linear le
squares fit, which are shown in the second column of Tab
To simulate the noise in the system, the data used for
linear least-squares fit were randomly perturbed with
same level of perturbation as the time series used in
present technique. We also used a finite-difference sch
with no perturbationto identify the exact system and use
those results as a reference for all the calculations. The e
values ofJ, w, and xFP are shown in the third column o
Table I.

The OGY controller designed for a specific saddle no
prescribes the amount of control parameter variationdp ac-
cording to

dp5qDx, ~16!

whereDx5x2xFP andq is a vector dependent on the Jac
bian, the stable eigenvector, and the sensitivity vector. C
sequently, the vectorq has a critical influence on the contro
performance. Therefore, the global indicator of the quality
the OGY controller is given by the relative error in identif
ing q. When we used the present identification technique
a sampling frequency of 700 points per period we obtain
relative errors of 12.4% and 9.3% for the two components
q. In comparison, the standard method led to relative er
of 15.4% and 15.7% when 50 pairs of state space location
the Poincare´ map were used.

V. DISCUSSION AND CONCLUSIONS

A different method to determine the linearized Poinca´
map and sensitivity vector about a saddle node required
the implementation of an OGY controller was presented. T
present technique is based on a model chosena priori and a
local identification of the nonlinear system that does not
quire a long period of time to observe the system in orde
acquire data. The implementation of an OGY controller w
shown to be possible as soon as the system completed
one orbit close to the limit cycle which is stabilized. Th
feature allows the design of an adaptive controller that
counts for parametric changes in the system. Accurate c
putations of both the Jacobian and the sensitivity vec
were shown for the particular case of a Duffing oscilla
with random perturbations. Less than 13% relative error w
t-
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obtained when a sampling frequency of 700 points per cy
was used.

There are several questions and observations that ca
offered based upon the present work. For example, wha
the sensitivity to the chosen radius of the identified regio
Clearly, the radius of the region where the data are collec
for the linear least-squares identification has a great influe
on the results. On the one hand, the region should be s
enough such that the linearity assumption is closely satisfi
On the other hand, the region should be sufficiently large
include enough points such that the measurement nois
small compared to the radius of the region. However,
problems that appear due to rapidly growing instabilities
not greatly affected by the size of the region as long as
region is small enough such that the linear approximati
are valid. The more critical issue is that when rapidly gro
ing instabilities are present the data are strongly cluste
along the unstable manifold, which is locally a straight lin
This clustering of the data leads to an ill-conditioned line
least-squares problem and large errors in approximating
Jacobian@14#. Of course, this issue is independent of the s
of the region where the data are collected. When the in
bilities are not severe, the clustering of the data is not
strong and the Jacobian may be accurately estimated.

What if the location of the fixed point is not knowna
priori? The present technique works better than the tra
tional method when the fixed point is not known. In th
traditional method one first has to observe the system fo
very long time and detect regions~very approximate regions!
where the fixed points may be present. Then one make
rough estimate of where the fixed pint may be located.
nally one collects data around the estimated fixed point
uses a linear least-squares fit to compute more precisely
fixed point and the Jacobian.

In contrast, the present technique virtually eliminates
waiting period when the system is only observed and
control can be applied. One scenario to apply the pres
technique is to observe the system until it undergoes a p
that is almost closed~only one almost closed orbit!. At that
point one is able to compute the fixed point, the Jacob
and the sensitivity vector. Therefore, once the system p
forms an almost closed orbit, one may start the controlle

In both the traditional and the present technique the fix
point need not be knowna priori. The system is observe
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and the fixed point is estimated based on the observati
The difference is that the present technique requires only
almost closed orbit, whereas the traditional technique
quires several such orbits. For example, in the numer
example 50 such orbits were used for each calculation w
the traditional method was used.

What if the nonlinearity and/or dimension of the system
not known? In this case the present technique cannot be
tt

s

ar
s.
ne
-

al
n

di-

rectly applied. The drawback of the present technique is
it requires ana priori knowledge of the local behavior of th
system close to the unstable orbit to be stabilized. T
local identification cannot work if no local model for th
system is available. However, for many physical systems
interest local models may be known. Moreover, only an
proximate model is needed since a local identification is p
formed.
, in
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