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System identification for the Ott-Grebogi-Yorke controller design
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A technique to compute the linearized Poiricarap and the sensitivity vector required for the implemen-
tation of an Ott-Grebogi-York€OGY) controller from experimental data is presented. Unlike previous meth-
ods, the linearized map and the sensitivity vector are computed using only data collected over a single period
of the limit cycle. The main advantage of the present method is the fact that it eliminates the long waiting
period required to design an OGY controller using previously known methods. Numerical examples are
presented using the Duffing oscillator with random perturbations to simulate noisy experimental data.
[S1063-651%97)10011-3

PACS numbd(s): 05.45+b

[. INTRODUCTION used a stochastic interrogation technique that allowed the
acquisition of more uniformly placed state space locations.

. Chaotic behavior, now commoply obs_,er\_/ed in a wide V_a'However, the stochastic interrogation did not eliminate the
riety of laboratory experiments, is beginning to reveal 'tslong waiting period required to collect the data.

great potgntial for applic.ations. One of the areas of signifi- |, 4| the previous techniques used to implement OGY
cant practical relevance |s.the control of chaos. A successﬂgomro"er& a long observation period is necessary to identify
attempt to control a chaotic system was made by Oft, Greme system only after which can control be applied. In this
bogi, and Yorkg 1] and led to a wide variety of experimental paper we propose an alternative technique to compute both
validations [2-7]. Several researchers proposed varioushe linearized Poincarenap and the motion of the saddle
schemes derived from the original Ott-Grebogi-Yorkenode using a time series of the nonlinear system. In contrast
(OGY) method[8-13. All these schemes are based on ato previous methods presented in the literature, the data nec-
linear analysis and control of the dynamics of the system iressary for the calculation are acquired along a trajectory that
a Poincaresection and thus require the calculation of a lin-is close to the limit cycle that will be stabilized. We show
earized Pincarenap around a saddle node and a linear apthat quite accurate results can be obtained using data col-
proximation of the motion of the saddle node due to variadected during only one period of the limit cycle. The present
tions of a control parameter referred to as a sensitivittechnique thus allows the implementation of the OGY con-
vector. troller as soon as the system completes a cycle close to the

Early examples of the control of chaos used maps knowhMmit cycle to be stabilized. Hence the present method elimi-
analytically, thus making the linearizations a straightforwardnates the long waiting period required by previous tech-
step. Further investigations applied the OGY technique tdidues. The present method also allows the design of an
nonlinear flows where the nonlinear Poincanep was nu- adaptive controller that easily recomputes its parameters
merically computed and the linearized map and the sensitivased on time series data, thus accounting for drifts in the
ity vector were easily obtained using finite differences. How-Parameters of the systeff6].
ever, for experimental applications, the finite-difference One of the nonlinear flows most often studied in the lit-
technique usually cannot be used to compute the linearize@rature, the Duffing oscillatoy17-19, is used to demon-
Poincaremap since most physical experiments do not allowstrate the present technique. Although the examples pre-
an arbitrary setting of the state space coordinates. Howevepented are numerical, the data are randomly perturbed to
the finite-difference technique can still be used to computéimulate experimental measurements.
the sensitivity vector.

Most of the previous experiments computed the linearized Il. SYSTEM IDENTIEICATION
Poincaremap using a linear least-squares fit of data mea- FROM A POINCARE SECTION
sured in the Poincarsurface around the saddle node. To _ ) ) )
collect the required data, some researchers observed a trajec- 1 Nis section describes the nominal OGY method. In gen-
tory of the system for a long period of time and acquired a€ral, a nonlinear Poincareap that depends on a parameter
pair of data points whenever the pair of state space locatior@dNd on the state space coordinate of the systgmmay be
were close to the saddle node. This acquisition scheme sufXpPressed as
plies data that belong to the strange attractor in the Poincare
map and are unevenly distributed around the saddle node Xn+1=f(Xn,P). 1)
because typically strange attractors do not have a uniform
density of points. Therefore, this method gives good resultd he linear approximation of the map around a fixed pmjst
for mildly unstable saddle nodes, but it may lead to largefor a nominal value of the parametpg becomes
errors in the linear least-squares fit when severe instabilities
are presenfl4]. To overcome this problem, Trickeji5] Xn+ 1~ Xep= J(Xn— Xgp) + SpW, 2
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whereJ is the Jacobian off, J=of/dx, andw is the deriva-
tive of f with respect tgp and is referred to as theensitivity
vectorw= gf/dp. Both the Jacobian and the sensitivity vec-
tor are computed at the fixed point and at the nominal value
of the parametep,.

The finite-difference approximation of the Jacobian may 051
be calculated using state space coordinates that are close t
the fixed point. For the case ofra-dimensional state space, .,
a first-order accurate approximation of the Jacobian may be oot
expressed as

J~[Af- - AfJ[AXy - Axp] 2, )

where Af,=f(Xgp+ AX; ,Po) — f(Xgp,Pg) are column vectors
and Ax; arem linearly independent column vectors. Simi-

larly, the sensitivity vector is approximated by 105 =y Y 7o 20

f(Xep, Pot+AP) = f(Xep, Po) ;
W= Ap : (4) FIG. 1. Chaotic attractor obtained in a Poincaegtion of Duf-
fing’s equation fore =0.0595, w,=1, w=0.84, andp,=0.2664.
Alternatively, the Jacobian can be computed using a lin-The circle indicates the region of radius 0.1 centered at the saddle
ear least-squares fit of data. In this technique the linearizegode. A blowup of this region is shown in the upper right corner.

Poincaremap in Eq.(2) is transformed to _ _
unstable manifold and contracted along the stable manifold

Xnt 1~ Xy + b, (5) thus being clustered along a curve. Kostelich has shown that
this kind of structure leads to ill-conditioned least-squares
whereb is an unknown vector characterizing the fixed pointproblems14] where the relative error in estimating the Jaco-
b=xgp—JIXep. An overdetermined linear system is then bian is large even when the noise level in measurements is
formed and solved using a standard linear least-squaresmnall.
solver. To compute the sensitivity vector one performs the
linear least-squares fit twice, determines two fixed points for |||. SYSTEM IDENTIEICATION FROM A PERIOD OFE
two values of the parametg, and computesv using these THE LIMIT CYCLE
two fixed points and Eq4). . . .
The following example uses a two-well Duffing oscillator  This section describes the proposed approach. The equa-
to show how a typical set of data may be acquired to identifytion of a flow that has the Poincareap given by Eq(1)
the Jacobian corresponding to a period-one limit cycle. Thénay be expressed in first-order differential form as
nondimensional form of Duffing’s equation, where the con- :
trol parameter is the amplitude of excitation, may be ex- x=9g(x,p,t). (@)

pressed in first-order differential form as The linear approximation of along the limit cyclex(t)

k=y =L(t) that corresponds tg-p becomes

o ig a9

: 1) L+ dx=gx=L+— X+—

y=—ey+ 5 —3 (x=x*)+p cogt+e), (6) O x> T op
p=0

op, ®

x=L(t)
op=0

where w, and ¢ are the linear natural frequency and the where 6x=x(t)—L(t) and dp=p—p,. Transforming Eq.

nondimensional damping in both wells of the Duffing oscil- (8) into a linear system of ordinary differential equations

lator andw, p, and¢ are the frequency, the nondimensional with variable coefficients, one obtains

amplitude, and the nondimensional phase of the excitation, .

respectively. The strange attractor displayed in a Poincare ox=A(t) 6x+d(t) op, ©)

section of the flow is shown in Fig. 1, where the circle indi-

cates the region of radius 0.1 where the data were Collectea‘{hereA(t) - (99/(9X|>;:I:_8) andd(t)= ﬁg/(?mfs;ig)' The solu-

A blowup of this region is shown in the upper right corner of tion of this system may be symbolically expressed as

Fig. 1. The distribution of the data around the fixed point is . .

one of the critical aspects of the fitting technique. The _

banded structure of the attractor determines the distribution ox(1) exr{ JoA(T)dT> ox(0)+op exp{ foA(T)dT

of the data because the data were collected by observing the

motion of the system for many cycles and thus the states « ft exr{ _ f”A(
7)d7

belong to the strange attractor. Consequently, there are large 0 0

areas inside the circle of radius 0.1 that do not contain any

data. This may lead to large inaccuracies for severely unThe Poincaresection of the solutiodx(t) leads to Eq(2),

stable fixed points because the data are stretched along thdere the Jacobian matrix is expressed as

d(6)de. (10
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J=exp( fOTA( T)dT) (11) ' '

05

and the sensitivity vector is given by

w=exp( JOTA(T)dT) fT exp( — feA(T)dT)d(G)dB,
0 0

120 5 oot

where T is the period of the limit cycle to be stabilized.
Consequently, only the matri& is needed to compute the
JacobianJ, while both A and d are need to compute the
sensitivity vector.

To compute the matri we propose a method referred to 05
as alocal identification This method assumes priori a
certain model for the real system and identifies the param

eters that describe this model. The parameters are comput ’ X
such that the state space trajectory of the model is close to
the limit cycle of the real system. Ttaepriori assumption of FIG. 2. The time series of the simulated Duffing oscillator is

a model is not a rare situation but rather a generic one beshown by the dots, while the solid line indicates the trajectory of the

cause approximate models may be developed for most sycally identified model given in Eq13).

tems of practical significance. Also the time-dependent part

of g is generally due to the external excitation that is usually Once the matrixA is computed, the Jacobian matrix is

of known form. Furthermore, the model of the system is onlyeasily obtained using E411). One may also use E@) for

required to be first-order accurate near the limit cycle for aSp=0 to determine the fixed point as

single periodl. Nevertheless, we note that generally it is not 1

possible to determine a model that will accurately describe Xpp=(1=3) " " (Xq+ 1= IXn), (15

e o e e 0 e s Munerl is te centy mari and, ands, , are o s
. : ’ ._cent states of the Poincaneap that represent the first and the

mate the dynamics of the system accurately for a short perio : . :

) d . e st points of the time series.
of time as is needed for a local identification.

. i ' . To compute the sensitivity vector a second local identifi-
To demonstrate this method we consider a Duffing oscil-__.. . .
: . cation for a different value of the paramefeis performed.
lator and its model given by

The fixed point andv can then be found using Eq4d.5) and
X=CoX+ C1x+ C,x2+ Cax3+ ¢, cogt) + Cy Sin(t). (4),_ respectively. This approach, however, requires the time
(13) series of two periods of the limit cycle, one fpg and the
other for a different value fop. A different approach that
Expressing Eq(13) in a state space form and using a finite- uses data collected during a single periods based on Eq.
difference scheme results in an equation at each instant ¢i2) where the vectod needs to be evaluated. Therefore, the
time t; during a periodT. For example, in the case of a form of the control excitation acting on the system has to be
constant time sampling interval, one may express the tim&nown. This situation is quite often encountered in practice

derivative using a second-order approximation as because usually the external forcing is known. A typical ex-
ample is the cosine function used in the driven Duffing os-
o Xir17 Xi-1 cillator shown in Eq(6). For this type of forcing, the vector
Do) =X~ L 14 o : ’
9(XiPo,ti) =X tivi—ti_g (14 d is simply given byd(t)=[0 cost+¢)]".

Equating the finite-difference value gfgiven by Eq.(14)
with the expression given by EL3), one obtains an over-
determined linear system of equations that is solved for the To simulate experimental measurements, Duffing’s equa-
unknown parameters; . Since the flow has sensitivity to its tions were integrated and then the state vectors were per-
initial conditions, a weighted linear least-squares solveturbed using a 0.013 maximum random perturbation of the
needs to be used. The weighting is designed such that th@osition, a 0.003 maximum random perturbation of the ve-
errors in satisfying the equations obtained for large time vallocity, and a 0.015 random perturbation of the location of a
ues are more important than the errors in satisfying the equaperiod one saddle node. The level of error introduced by the
tions obtained at small time values. random perturbation was representative of the experimental

In Fig. 2 a time series of the simulated Duffing oscillator results presented by Trickd{5].
is shown by the dots. To simulate experimental data, the time The matrixA was computed using a local identification of
series was randomly perturbed and a local identification wathe dynamics along the trajectory, while a veaiovas con-
performed using the perturbed time series. The solid lineidered of the formd(t)=[0 cos(+¢)]". The Jacobian, the
indicates the trajectory of the identified model. As expectedsensitivity vector, and the fixed point location were then
the original and the identified systems have trajectories thatomputed using Eqg11), (12), and(15), respectively. The
are very close. results are presented in the first column of Table | and may

IV. NUMERICAL EXAMPLES



5330 BOGDAN |. EPUREANU AND EARL H. DOWELL 56

TABLE I. Numerical comparison of the three methods of system identification.

Local Linear Error (%) Error (%)
Parameter identification fit Exact local identification linear fit
Jin —-2.35 —-1.90 —-2.27 3.40 16.36
Jip —4.44 —-3.47 —-4.21 7.67 11.14
Joq -1.35 -0.93 -1.18 14.13 20.77
Jyy —-2.91 —-2.01 —2.49 16.74 19.17
Wy —-5.12 -3.14 —4.44 15.21 29.20
wy —-2.74 —1.43 —2.04 34.50 29.88
Xep 0.228 0.233 0.233 2.20 0.49
Yep 0.0577 0.0597 0.0597 3.29 0.47
Ox 0.476 0.628 0.544 12.4 154
ay 0.978 1.25 1.08 9.35 15.7

be compared with the results of a standard linear leastebtained when a sampling frequency of 700 points per cycle

squares fit, which are shown in the second column of Table lwas used.

To simulate the noise in the system, the data used for the There are several questions and observations that can be
linear least-squares fit were randomly perturbed with thesffered based upon the present work. For example, what is
same level of perturbation as the time series used in thghe sensitivity to the chosen radius of the identified region?

present technique. We also used a finite-difference schemglearly, the radius of the region where the data are collected

with no perturbationto identify the exact system and used for the linear least-squares identification has a great influence
those results as a reference for all t_he calcul_atlons. The exagh the results. On the one hand, the region should be small
values ofJ, w, and xgp are shown in the third column of o649k such that the linearity assumption is closely satisfied.

Table I. On the other hand, the region should be sufficiently large to

The_bOG:(hcontrolle: dfe5|gnted| for a sptecn‘lc _saﬁddle nOdqnclude enough points such that the measurement noise is
prescribes the amount of control parameter vanaaprac- g, compared to the radius of the region. However, the

cording to problems that appear due to rapidly growing instabilities are
not greatly affected by the size of the region as long as the
region is small enough such that the linear approximations
are valid. The more critical issue is that when rapidly grow-
whereAx=x—Xgp andq is a vector dependent on the Jaco-ing instabilities are present the data are strongly clustered
bian, the stable eigenvector, and the sensitivity vector. Conalong the unstable manifold, which is locally a straight line.
sequently, the vectay has a critical influence on the control This clustering of the data leads to an ill-conditioned linear
performance. Therefore, the global indicator of the quality ofieast-squares problem and large errors in approximating the
the OGY controller is given by the relative error in identify- Jacobiar]14]. Of course, this issue is independent of the size
ing g. When we used the present identification technique andf the region where the data are collected. When the insta-

a sampling frequency of 700 points per period we obtainedilities are not severe, the clustering of the data is not so
relative errors of 12.4% and 9.3% for the two components oktrong and the Jacobian may be accurately estimated.

g. In comparison, the standard method led to relative errors What if the location of the fixed point is not knowan
of 15.4% and 15.7% when 50 pairs of state space locations ipriori? The present technique works better than the tradi-

op=0qAx, (16)

the Poincarenap were used. tional method when the fixed point is not known. In the
traditional method one first has to observe the system for a
V. DISCUSSION AND CONCLUSIONS very long time and detect regiofeery approximate regions

where the fixed points may be present. Then one makes a

A different method to determine the linearized Poincarerough estimate of where the fixed pint may be located. Fi-
map and sensitivity vector about a saddle node required fanally one collects data around the estimated fixed point and
the implementation of an OGY controller was presented. Thaises a linear least-squares fit to compute more precisely the
present technique is based on a model chaspriori and a  fixed point and the Jacobian.
local identification of the nonlinear system that does not re- In contrast, the present technique virtually eliminates the
quire a long period of time to observe the system in order tawaiting period when the system is only observed and no
acquire data. The implementation of an OGY controller wascontrol can be applied. One scenario to apply the present
shown to be possible as soon as the system completed onigchnique is to observe the system until it undergoes a path
one orbit close to the limit cycle which is stabilized. This that is almost close¢only one almost closed orbitAt that
feature allows the design of an adaptive controller that acpoint one is able to compute the fixed point, the Jacobian,
counts for parametric changes in the system. Accurate conand the sensitivity vector. Therefore, once the system per-
putations of both the Jacobian and the sensitivity vectorforms an almost closed orbit, one may start the controller.
were shown for the particular case of a Duffing oscillator In both the traditional and the present technique the fixed
with random perturbations. Less than 13% relative error wapoint need not be knowa priori. The system is observed
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and the fixed point is estimated based on the observationsectly applied. The drawback of the present technique is that
The difference is that the present technique requires only oni¢ requires ara priori knowledge of the local behavior of the
almost closed orbit, whereas the traditional technique resystem close to the unstable orbit to be stabilized. The
quires several such orbits. For example, in the numericdbcal identification cannot work if no local model for the
example 50 such orbits were used for each calculation whesystem is available. However, for many physical systems of
the traditional method was used. interest local models may be known. Moreover, only an ap-

What if the nonlinearity and/or dimension of the system isproximate model is needed since a local identification is per-
not known? In this case the present technique cannot be diermed.
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